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AN O D D  C H A R A C T E R I Z A T I O N  OF J4 

BY 

G. STROTH 

ABSTRACT 

Z. Janko recently discovered a finite simple group called J4. The purpose of this 
paper is to classify J4 by the structure of the centralizer of an element of order 
three. 

It seems probable that in the near future the problem of determining all finite 

simple groups will be reduced to determining the simple groups all of whose 

2-local subgroups are 2-constraint. For finite simple groups possessing a non 

2-constraint 2-local subgroup we almost have a standard subgroup. This was a 

key subgroup for the classification of these groups. If G is a known finite simple 

group all of whose 2-locals are 2-constraint there almost is a p-standard 

subgroup A for a certain prime p. It seems likely that in general there is such a 

p-standard subgroup or G is known. 

A subgroup A of G is said to be p-standard if A ' =  A and A / Z ( A )  simple. 

Further Co(A) possesses nontrivial cyclic Sylow p-subgroups. If P C  

Sylp (Co(A)), then No ((x))=< N~ (A)  for all 1 ~ x E P. We finally have some 

connection between p and A. 

Thus it seems to be a good concept to classify finite simple groups by a 

p-standard subgroup. In working with a standard subgroup A such that 

A / Z ( A  ) -~ Mz2, the prime in question is three, it is necessary to classify J4 by the 

centralizer of an element of order three which is the full covering group of M22. 

This classification might be of independent interest. The result reads as follows. 

THEOREM. Let G be a finite group o[ characteristic 2 type and p an element of 

order three in G such that O~2"3r(Co(p)) is isomorphic to IVI22 the full covering 

group of M22. If G is not 3-normal then G is isomorphic to J4. 

A finite group is said to be of characteristic 2 type if[ all 2-local subgroups are 

corefree and 2-constraint. I hope all other notations will be standard. 
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First of all we list some properties of M22, ~/22 and Aut (M22) which can be 

found in [2]. 

LEMMA 1. (i) There is exactly one conjugacy class of involutions in M22. There 

are involutions in Aut (M22)- M2z. 

(ii) Let T be a Sylow 2-subgroup of M22. Then T = f~l(T). There are precisely 

two elementary abelian subgroups El and E2 of order 16 in T. We have 

N(E,)/E1 -~ A6 while N(E2)/E2 ~- Y.5. Let T1 be a Sylow 2-subgroup of Aut (M22) 

containing T. Then CT1 (E,) = E1 while CT, (E2) # E2. 

(iii) All elements of order three in 1QI22- Z(I(/I22) are conjugate. Let ~" be an 

element of order three in 2QJ22- Z(1(422). Then a Sylow 2-subgroup of C~2(z) is of 
order 8. 

(iv) Let S be a Sylow a-subgroup of 2~I22. Then I S 1 = 2 7  and I z ( s ) l = a .  

(v) Let V be a Sylow 5-subgroup of M22. Then NM~( V) is a Frobenius-group of 
order 20. 

(vi) A Sylow 11-normalizer in M22 is a Frobenius group of order 55. 

LEMMA 2. (i) Co(p)contains a Sylow 3-subgroup of G. 

(ii) All elements of order three are conjugate in G. 

(iii) We have No ((p))/Z*(CG (p)) ~ Aut (M22). 

PROOF. (i) follows from Lemma 1 (iv). Let S be a Sylow 3-subgroup of Co(p). 
Since G is not 3-normal there is an element z E S - Z ( S ) ,  r - p  in G. By 

Lemma 1 (iii) we have that all elements of order  three in S are conjugate to p or 

p-1. As z - r -1 in Co(p) we have that all elements of order three are conjugate 

to p. This yields (ii). As p - p-1 we have I No ((p)): Co(p)l = 2. So we have (iii). 

LEMMA 3. Let z be an involution in Z(Co(p)). Then Q = OdCo(z)) is 
extraspecial of width 6. Further Co(p)= O~2'ar (Co(p)). 

PROOF. Set Q = Q / ( z ) .  As Co(p)C_Co(z) we get C o ( p ) =  1. Let S be a 

Syiow 3-subgroup of Co(p)  and W = (p, r > an elementary abelian subgroup of S 

of order  9. Let 1 ~ 01 be a No((p )) - -  invariant subgroup of 0 .  Then W acts on 

01. The fixpoint-formula yields 

l O, l I co , (w) l  = I 

From Lemma 1 (iii) it follows that ~" ~ pz ~ p r - '  in No((p)). Hence 1011 = 

I Co,((r>)lL From Lemma 1 (iii) and Lemma 2 it follows that a Sylow 2-subgroup 

of Co(r)t-INo((p>) is of order  16. Set H = ( Q ,  NG((p>)>. Then a Sylow 2- 

subgroup of C , ( r )  is of order 8. I Co(~')l. As r is conjugated to p in G we get 
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that a Sylow 2-subgroup of C~(r)  is of order 2 ~. This yields t Co(r)l --< 2 -~. Now p 

acts on Co,(~'). Further Cco,t,~(p) = 1. Hence Co,(~') is of order 4 or 16. 

Therefore t~  is of order 2 6 or 2 ':. As 11 g IGL(6,2)I, 10,1 = 2 'z. Now we have 

I Co,(r)l = 2 ' =  I Co (r)l. This yields Q, = Q. Hence t) is an irreducible H/Q-  
module. Then Q is extraspecial of width 6 or elementary abelian. Assume the 

latter. Set H~ = Ca (~') and V = Co (r). Then V is elementary abelian of order 2 ~. 

As V/Z(HI)  is elementary abelian of order 16 Lemma 1 (ii) yields 

N. , (V) /C. , (V)-~  A6 or E~. Now N.~(V) contains C.,(p). From Lemma 1 (iii) it 

follows that Cn,(p) contains a subgroup X • (p) where X is of order 8. Hence 

N.~(V)/Cn,(V) contains a subgroup X~ • Y where Y is of order 3 and X~ of 

order 4. But this contradicts the structure of A6 and Ys. This completes the proof 

of the lemma. 

LEMMA 4. Set H = (Q, N~((p))) and H, = (Q, Ca(p)). Let x be in Ht, x 2 E Q. 
If  x h E H  for some h EC~(z )  then x h EH, .  

PROOF. Set iQ = H/Q and /q =H/(z) .  Let v be in H,, o ( v ) =  11. Then 

[Co(v)t=4. According to Lemma 1 (vi)choose to E N,((v)),  o( to)= 5. Then 

[Co(v),oJ]=l. Further I [ t ) , to ] l=16  or 256. As (v, to)=(to, wv), we get 

/It), toil = 2 8. According to Lemma 1 (v)choose 37 E N~((oS)), o(37) = 4. Then 

ICt~. o1(372)1-> 2 ~ and I Cco,~(37~)1_-> 4. As [37~,t~] = 1, p acts on C,-o,,o~(372). This 

yields [Co (to), 372] = 1 or [C~o~(37~)1 = 4. Assume the latter. Since Cco~(37) is 

t3-invariant, we have Cca~(37) = Ccc~(372). Application of [4, lemma (2.1)] yields 

a contradiction. So we have I Co(372)[_-> 2 ". By lemma 1 (i) we get [Co (.~)l_-> 2 8. 

Now assume f = x h E H - H~. Then t5 f = #- ' .  Hence I Co (f)l  = 2~- But this is 

impossible. 

LEMMA 5. H = ( Q, Na ((p))) contains a Sylow 2-subgroup of Ca(z). 

PROOF. Set X =  Ca(z) and )~ = X / Q .  Let /~ be an elementary abelian 

subgroup of order 16 in A such that Nn(/~) involves Am. Application of Lemma 

1 (ii) yields Cn (/~) = /~  x (iS). Now Cx (/~) possesses a normal 3-complement/( .  

The Frattini argument yields Nx(/~)=/(NN,~t~(S),  where S is a Sylow 2- 

subgroup of /(. Therefore N~ (S) contains a Sylow 3-subgroup of /4. Let 

W = ( r , p )  be an elementary abelian subgroup of N• of order 9 with 

ICE (~)[ = 4. Let x be an element in W -  (p). Then Lemma 1 (ii) yields that 8 

divides I CN,~,(2)1. As Wielandt's fixpoint formula yields I Co (x)[ = 32 and x - p 

in G, we get I c~ (2 )1=2  2. Hence C~(37)_-</~ for all 1~37 E if'. But then 
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This shows S = E. 

Let "F be a Sylow 2-subgroup o f / 4  containing/~ and ~P, _-< ..Y, I 'L : T I = 2. Set 

T2 = T f3 C,(p).  Then Lemma 4 yields )7 ~, C_ Tz for all involutions )7 E ~P2. By 

Lemma 1 (ii) we have T2 = I'h(7'2). Hence "/~, _-< N~ ('it2). Now Lemma 1 (ii) yields 

"iF~ __< N~ (E). The Frattini argument yields N~(E)  = C~ (g)NNx~g)((/~)). As /~  is 

a Sylow 2-subgroup of C~(E)  we have that NNx~)((t~)) contains a Sylow 

2-subgroup of N~ (E'). But I T~ I= 2 9. This contradiction proves the lemma. 

LEMMA 6. G ~ J4. 

PROOF. Set H = (Q, Nc,,((p})). From Lemma 5 we know that H / O  = ISl 

contains a Sylow 2-subgroup of Ca(z). From Lemma 4 it follows that no 

involution in H - C,(p)  is conjugated in Ca(z) to an involution in CH(p). From 

Lemma 1 (i) we know that there are involutions in H -  C, (p) .  Now [3, (5.38)] 

yields that Co (z) possesses a subgroup / (  of index two. A Sylow 2-subgroup o f / (  

is of type M:~. As/.(  acts faithfully on Q/(z), [1] yields O ' ( / ( /O( / ( ) ) - - -  M~2. But 

then a Frattini argument yields C a ( z ) =  O(Cc,,(z))Nc((p)). Further 

E O(C~(z)). So O(C~(z)) possesses a normal 3-complement ,~,. The order of 

O§ yields that an element of order 11 in N~((p)) centralizes )~.  But then 

fG ~= NG((p)). This yields H = C~(z). Clearly G is simple. Now [2] yields the 
assertion. 
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